
SHACIRA
User Manual

Copyright © 2006 by
2i Industrial Informatics GmbH

Wirthstraße 7
D-79110 Freiburg

Tel. +49 (0) 7 61 / 4 52 05-0
Fax +49 (0) 7 61 / 4 52 05-90

e-mail info@2igmbh.de
www.2igmbh.de

mailto:info@2igmbh.de

User Documentation: Shacira Page -2-

1 OVERVIEW 4

2 USER FUNCTIONS 6
2.1 Function classes 6
2.2 Function References 7

3 CCS SERVICE 8
3.1 Basic CCS Communication Principles 8
3.2 CCS Logistic Infrastructure 11
3.3 CCS Software Layers 12
3.4 CCS Database 12
3.5 Device abstraction 13
3.6 Programs (tasks) 13
3.7 Persistence 13
3.8 Storage 13
3.9 Data Modelling in SLANG 13
3.10 Variable mapping to a device 19
3.11 Extending a CCS Service 21
3.12 Databases Contexts and Variables 24
3.13 Variables 25

4 HOW TO IMPLEMENT APPLICATION SPECIFIC DEVICES 27
4.1 Role of buf_spec, var_name and address arguments 29
4.2 Bit Operators 29
4.3 Device caching 29

5 HOW TO IMPLEMENT MODEL FUNCTIONS 30
5.1 Automatic arguments of model functions 31

6 HOW TO IMPLEMENT APPLICATION SPECIFIC PROGRAMS 32

7 VARIABLE REFERENCES 34
7.1 Unlimited Variable References 35
7.2 Variable references as notification end points 37

8 QT GUI FRAMEWORK 39
8.1 Information flow in a Shacira application 39
8.2 Software architecture of the GUI Framework integration 40
8.3 User interface structure 40
8.4 General CWidget functionality 42
8.5 CWidget Data Input functionality 44
8.6 General CWidget properties 45
8.7 Input Widgets 47
8.8 Application Frame CAppFrame 47
8.9 CWidget types 51
8.10 Organization of custom specific GUI code 52

9 HOW TO IMPLEMENT GUI FUNCTIONS 55
9.1 Functions that extend the GUI 55

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -3-

10 HOW TO IMPLEMENT APPLICATION SPECIFIC WIDGETS 59

11 SYSTEM STARTUP PROCEDURE 60
11.1 Client Startup 60
11.2 Server Startup 60

12 TOOLS 65
12.1 Developer Tools 65
12.2 Runtime Tools 65

13 CONFIGURATION 67

14 SHACIRA API 73
14.1 Application Programmer View 73
14.2 System Programmer View 75

15 CODE ORGANISATION 77
15.1 Development 77
15.2 Runtime 79
15.3 Binary Files of a CCS-Application 80

16 GLOSSARY 81

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -4-

1Overview

Client Client

Client

CCS service

Target
System

Client
System

Client
System

Client Client

Transparent, well defined
data exchange

Network

Client

Devices

Fig. 1-1 Usage scenario for CCS services

The Shacira Framework consists of two Software components:

1. A CCS Service (Core Control Services)

2. A GUI Framework that is capable of interfacing a CCS Service
The GUI Framework will be used to develop CCS service clients.

Both components, the CCS service as well as the GUI Framework can be extended in
several ways to fulfil application specific requirements.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -5-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -6-

2User Functions
User functions are a general way to realize application specific functionality within the
Shacira Framework.

User functions must be declared through a signature similar to C function declara-
tions. User function arguments are restricted in two ways:

• user function arguments generally are input arguments

• user function arguments are restricted to Shacira Base Types and Shacira String
Types

There is no restriction on the argument count.

User functions that extend the Shacira GUI Framework are referred to as GUI func-
tions. User functions that extend CCS services are referred to as Model functions.

Every user function is associated with a function class that implies the usage context of
the function.

2.1Function classes

Function classes are split up into the 2 groups of Model functions and GUI functions:

Model function classes

• Filter functions

• Conversion functions

• Limit functions

• Unit functions

GUI function classes

• Dark (blanking) functions

• Plausibility functions

• User functions

• Button functions

• Signal filter functions

• Slot functions

Additionally to the declared input arguments, every function class has so called auto-
matic arguments. Automatic arguments are arguments that are generally supplied
when calling the function. Automatic arguments must not be declared and precede the
declared argument list. Count and semantics of automatic arguments vary depending
on the function class.

Details to user function usage follow in the chapters about model functions and about
GUI functions.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -7-

2.2Function References

Function references can be compared with C-Function calls. Function references allow
embedding of function calls into code that is not C-code. Embedded function calls can
be placed at specific places to hook application specific functionality.

• Text type properties of Qt Widgets used in the Qt Designer (explained later)

• Specific properties of the data model

Afunction reference will be interpreted and called by the Shacira Runtime System. Nev-
ertheless, the implementation of the function is ANSI-C.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -8-

3CCS Service
When we talk about the CCS service, a process that hosts a couple of Core Control
Services is meant. A CCS Service consists of a couple of different services. This services
build a runtime system that generates application data and propagates this data up to
a specific user interface. Data exchange between a user interface and a CCS Service
comes in two forms.

1. The asynchronous way:
CCS services generate events to inform other components of the application,
for example the user interface, that “something” has happened.

2. The synchronous or client-server interface that offers query methods to acces
CCS data.

3.1Basic CCS Communication Principles

Throughout the architecture of a CCS service, two basic communication mechanisms
are used. These basic principles are used two implement the client Interface of a CCS
service. A CCS service offers two logical interface types:

1. Synchronous communication

2. Asynchronous communication

Synchronous Communication

 Client 1

CCS Client 2

Client n

request

reply

CCS Data Services are the client server interface of a CCS service. If a client needs
some information from the CCS service, this information must be requested from the
CCS. A response (even an error condition) is delivered synchronous. This mechanism
guarantees to get a reply.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -9-

Async chronous Communication

 Client 1

CCS Client 2

Client n

event

The asynchronous communication part can be viewed as a couple of channels that
carry information as a sequence of events appearing over time. Events are available
as event objects delivered over a specific channel called event channel.

CCS event objects are called transient objects. They all inherit from the base class
cTransientObject. CCS event objects - shortly called transient objects – are used to
communicate arbitrary informations between different application components. Transi-
ent objects must implement a serialization interface. Serialization of transient objects
offer the possibility to send objects over process and network boundaries.

Every interested application component is able to register with the end of an event
channel to receive events in the form of event objects. Sources for events in a CCS Ser-
vice are device objects, program objects and other services. A typical situation is to re-
gister for data change notifications of a variable. The deliverance of events is not syn-
chronised with the client. There is no guarantee when or if at all an event is delivered.

In contrast to a simple callback mechanism, the CCS event interface is not coupled dir-
ectly to a client. This construction avoids the possibility of negative side effects by dir-
ectly calling client functions. Event delivery can neither delay nor crash CCS service
functions.

The asynchronous communication interface of a CCS service is based on a more gen-
eral communication mechanism used throughout a CCS service: Event Channels

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -10-

Event Channels

Receiver 1

Receiver 2

Receiver k

Event channel
Sender 1

Sender 2

Sender l

front end back end

Process boundaries

Network boundaries

Thread boundaries

The event channel model must conform to the following requirements:

1. An event channel has a front end to receive data

2. An event channel has a back end to send data

3. An event channel can be used by arbitrary channel clients to send data
(senders)

4. An event channel can be used by arbitrary channel clients to receive (listen to)
data (receivers)

5. The number of senders is not restricted nor is the number of receivers

6. Every event sent by a sender to the front end of the event channel is transmitted
to every receiver listening to the back end of the event channel.

Event channels are not restricted to transmit data within processes. As a consequence
the CCS system offers different event channel implementations. Event channel imple-
mentations that are used within the CCS service are event channels that propagate
events with minimal time or performance consuming overhead. These event channels
are very fast but restricted to in process usage. Receivers and senders can only be
threads within the same process. These very fast event channel implementations can
be used for the communication between clients and CCS service when the CCS service
is housed within the client process.

There are further event channel implementations that offer the opportunity to propag-
ate events across process and even network boundaries.

Actually there are two event channel implementations that are able to cross process
and network boundaries based on similar technologies:

1. An implementation based on the CORBA event service specification.

2. An implementation on top of the CORBA synchronous object interface.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -11-

3. An implementation based on the TCP/IP UDP protocol using datagrams.

The selection of a specific channel implementation can be configured using the CCS
service configuration interface.

3.2CCS Logistic Infrastructure

Every CCS service contains a definable infrastructure that manages propagation of
event objects. For this purpose we use defined and free configurable queues called lo-
gistic queues. Logistic queues are specific channels that are capable to buffer a certain
amount of transient objects. Logistic queues block if the the queue is full.

CCS service process

CCS device control

CCS dispatcher

CCS async interface

CCS logger

CCS job manager

CCS control program

Data change notifications

Alarms, cycle events, ...

Job entries
Specific Alarms
(tolerance violations)

Fig. 3-1 Example scenario of CCS logistic queues

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -12-

3.3CCS Software Layers

A CCS service consists of a couple of well defined software layers. Every layer fulfills
specific tasks.

Database Layer

Device Layer

Program Layer Interface Layer

Fig. 3-2 CCS Software Layers

• The Interface Layer enables application developers to show and record applic-
ation data that is supplied and manipulated through the lower layers.

• The Program Layer offers the application programmer services related to time
constrained tasks that are not directly obvious to the user interface. Nevertheless
the Interface Layer can directly reflect state changes of application data if
needed.

• The Database Layer supplies services for the higher layers through well
defined variables. Variable descriptions reside in the data model of the applica-
tion. The database layer also manages resources that are needed to meet the
application developers intention.

• The Device Layer holds abstractions of arbitrary and free programmable
device interfaces this layer enables the higher layers to exchange data with con-
crete devices of the process to be controlled and visualized.

CCS software layers are designed to interface only to layers that have direct contact in
the layer diagram above. This rule forbids to directly communicate to devices from the
Interface or the Program Layer.

3.4CCS Database

The CCS database supplies and manages resources that are used to store and retrieve
data.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -13-

The CCS database is a specific “database” that holds application specific data. The
CCS database interface is directed to the specific needs of holding data in a manufac-
turing environment and is not comparable to known database technology interfaces
(the CCS database is for example no SQL server). Nevertheless this storage simply is
referred to as the CCS database.

The description of a CCS database is done using a specific language SLANG (Shacira
LANGuage) to model structure and further properties of the data that is used by the
application.

3.5Device abstraction

To interface with peripheral devices such as PLCs CCS offers device objects to ex-
change data with devices in a common and well defined way.

3.6Programs (tasks)

Programs or tasks are offered to do cyclic work that not originates from atomic state
changes in the process environment.

3.7Persistence

To persist data over shutdown periods of the system, a persistence service is imple-
mented.

3.8Storage

To exchange data among different CCS applications, a storage service is implemented
that stores data of the CCS database into flat files.

These files then can be imported into other CCS applications.

3.9Data Modelling in SLANG

The abstract syntax of the modelling language can be found in:

ShaciraLanguage.html

The abstract syntax shows the structure of the underlying language. Syntactical nota-
tions are expelled in C-Style comments if necessary.

Semantic description

A Shacira model can contain a set of definitions. The order of the definitions is arbit-
rary with the execption of references. When for example a function is referenced the
declaration for the referenced function must already exist (function declarations must
precede function references). The same is true when variable references are used (the
variable definition must precede every reference of this variable) and when unit defini-
tions are used.

Database Definition (DatabaseDef)

database “plc_vars” device=SPS1 {
 variable definitions …

Version: 1.5 19.Jan. 07

http://ShaciraLanguage.html/

User Documentation: Shacira Page -14-

};

A database definition contains the description of a couple of data items called vari-
ables. Variables can be structured up to 4 dimesions.

When a device is specified for a database using the specification device=<device
name> then all mapping specifications within this database are directed to the device
with the specified name.

The semantics of a database allows the usage of more than one database with the
same name. The database name is semantically simply a property of every variable
definition within this database.

Function Declaration (FuncDecl)

A function declaration defines a function signature similar to C-function prototypes
Function argument types are restricted to the SHACIRA base and string data types.

When a function reference (function call) is used throughout the runtime system, the
function declaration is required to supply the proper arguments and to return the cor-
rect value type.

When a function reference (function call) is part of the model, the function declaration
is required to implement type checking at compile time.

conv long fact(long number);

is an example for the declaration of the factorial function as a conversion function.

Function Reference (FuncRef)

A function reference defines a function call with concrete arguments.

The arguments that can be supplied recruit from the following sources:

1. A constant value of type BaseType or StringType compatible to the specific argu-
ment declaration.

example: fact(200)

2. A variable reference. The variable data type must be compatible to the specific
argument declaration.

example: fact(array[50]) array[50] here is a variable reference

3. Another function reference. The return type of the referenced function must be
compatible to the specific argument declaration.

example: fact(fact(3)) fact(3) here is the function reference

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -15-

Variable Definition (VarDef)

A variable definition describes a variable of the data model. Variable name, structure
and type must be specified. The description of a variable can be extended by specifiy-
ing properties directing to the areas:

• Verbose textual descriptions

• User function references for conversion, filtering, access and range control

• Mapping to a device

• Physical Unit description

• Persistence

• Dataset management

• …

Example:

SetStrPlstShotSize[InjUnits] // mm, Achtung maximum,Index 2 sollte Aggregat verwendet werden
 float
 vartype=set
 unit=StrVol
 description="Stroke plasticising"
 persist=file
 file=Tool
 minimum=0
 maximum=MaxStrPlstShotSize()
 map register ushort(1) {ssdos1, -1, -1, -1, -1, -1}
;

A variable definition defines all properties of a variable. This includes type and struc-
ture specifications and the mapping of the variable to a device. When a variable is not
mapped to a device the variable is called an internal variable. Mapped variables are
actually mapped to the device specified in the Device Specification of the database.

A variable definition starts with a variable name that is a legal Identifier specified by
the token specification Ide.

Structure information is specified using an array specification with up to 4 dimensions.
Structure information is immediately supplied behind the variable name. A dimension
is specified by an Integer value (dimension size) embraced by [].

When no structure information is supplied the variable is a sc

array[100] defines a variable with one dimension of size 100.

Behind variable name and structure information a data type for the variable must be
specified. Data types are restricted to the following data types:

Shacira base types:

• bool: 8 bit char data (contains 1 if true and 0 if false). When setting a bool
value a value != 0 will set the bool variable, 0 will reset the bool variable.

• char: 8 bit signed character variable ranging from –127 to 127.

• uchar: 8 bit unsigned char variable ranging from 0 to 255.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -16-

• short: 16 bit signed variable ranging from –32767 to 32767

• ushort: 16 bit unsigned variable ranging from 0 to 65535

• long: 32 bit signed variable

• ulong: 32 bit unsigned variable

• float: 4 byte single precision variable

• double: 8 byte double precision variable

Shacira string types:

• string(size): fixed size string variable (size is supplied as parameter)

• wstring(size): fixed size wide string variable (size is supplied as parameter)

• byte(size): fixed size byte string (size is supplied as parameter)

• object: variable size byte string (pointer to memory). The supplier determines
the size.

Types bit8, bit16 and bit32 should only be used in the description of device mappings.
They are not used to describe CCS data.

Variable related properties

Besides structure and type information, a variable has properties that may affect func-
tional semantics or localized variable description:

Description (description=”description”)

Example:

 description="Stroke plasticising"

A description is an arbitrary string that describes the variable. The description of the
variable can be seen as comment of the developer.

Text (text=”text”)

Example:

 text="Plastifizierweg"

The variable text is a short description of the variable that will be localized and trans-
lated. The text of the variable therefore can be used to generate localized representa-
tions to denote a variable and that can be also understood by machine operators.

Dim1 (dim1text=”text”)

Example:

 dim1text="Aggregat"

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -17-

Dim2 (dim2text=”text”)
Dim3 (dim3text=”text”)
Dim4 (dim4text=”text”)

Dim1 to Dim4 assign names to dimensions of the variable. These texts are also local-
ised and can be used to show users localised and better understandable names of
variables.

VarType (vartype={act,set,volatile})

Example:

 vartype=set

The variable type describes the usage and the semantics of Variables that are mapped
to devices.

act

The variable is an actual value. It is not possible to set the value of a variable that is
specified as act. Act values are refreshed by the device cache. The device cache is used
to optimize transfer operations for act values to avoid unnecessary traffic between a
device and a Shacira application. When somewhere within the application an act
value is queried, this value is read from cache (not from the device).

set

Variables of type set are variables that are managed only within the CCS service.
Mapped devices hold a value that is identical to the value within the CCS database.
Therefore the CCS Service is responsible to transmit set values to the device whenever
the value in the database changes or the service starts up.

To optimize startup behaviour device objects can buffer set values and transmit all
data in a single download step. The values of set variables are guaranteed to be
synced with the internal CCS database if a device has the possibility to signal a down-
load request.

When the device signals a download request after loss of data all data will be trans-
mitted to the device.

volatile (default)

Volatile variables exchange data with a mapped device when the variable data
changes (a device write operation will be initiated) or when the value is read (a device
read will be initiated). Neither caching nor buffering is possible.

PersistenceType (persistence={ram,bbram,file})

Example:

 persist=file

The persistence type of a variable specifies the storage location for the variable data.
This specification determines the life cycle of variable data. The data of bbram and file
based variables persist process and even system shutdowns, ram based variables do
not and must be initialised whenever a CCS service restarts.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -18-

RefreshType (refresh=<milliseconds>)

Example:

 refresh=100

RefreshType (refresh=event <event type>)

Example:

 refresh=event cycle

RefreshType (refresh=event <refresh code>)

Example:

 refresh=event 2

The refresh type of a variable with vartype = act determines the moment when data is
refreshed from a device. The most typical usage is to specify a refresh as integer value
that defines a refresh cycle. This value is interpreted as milliseconds.

Beneath cyclic refresh specifications it is possible to bind a refresh operation for an act
variable to system specific (second form) or application specific (third form) events.

File (file=Identifier)

Example:

 file=Tool

Variables of variable type set can be stored in a file that can be written to changeable
media. This file is organized as a couple of subfiles. The file specification associates a
variable with one of these subfiles.

FilterFunc (filter=<FuncRef>

Example:

 filter=WDChangedTime()

A filter function is a function that is used to set and get variable values. It filters all of
the standard behaviour when getting and setting variable values. The filter function de-
termines what happens if a variable value is written or read.

The function class of the referenced function must be filter.

MinSpec (minimum=<Agument>

Example:

 minimum=MinNumHeatZones() or
 minimum=0

The min specification determines the lower limit for the variable values. This limit can
be specified as an argument that means it can be specified as a function reference, as
a variable reference or as a constant value.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -19-

MaxSpec (maximum=<Agument>

Example:

 maximum=MaxNumHeatZones() or
 maximum=22

Same as MinSpec but specifies the upper limit for variable values.

3.10Variable mapping to a device

Every variable defined in a CCS data model can be mapped to a device. The variable
then represents device data that can be buffered, cached or transformed.

A device mapping description comes in two forms:

• Name based mapping

• Address based mapping

These forms of the mapping specification are contributions to the addressing scheme
of devices that are based on either names or integer addresses.

To simplify mapping notations for structured variables it is possible to specify a list of
mapped items .

Scalar address based mapping (map buf-spec type address:bitpos)

Example:

ActTimPlstCool
.
.
 ushort(1) map register ushort 0x55

This definition maps a device address to an unstructured variable.

Scalar name based mapping (map buf-spec type name)

Example:

vidCam1Source byte(443000)
.
.
 map Channel0 byte(443000) "Image";

This definition maps a device name to an unstructured variable.

Structured address based mapping (map buf-spec type {address:bitpos,…})

Example:

SetStrPlstShotSize[6]
.
.
 map register ushort {0x68, -1, -1, -1, -1, -1}

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -20-

This definition maps device addresses to a structured variable in the form of a flat ad-
dress list.

Structured name based mapping (map buf-spec type {name,…})

Example:

Example:

VidCamSource[2] byte(443000)
.
.
 map Channel0 byte(443000) {"Image1", "Image2"};

This definition maps device names to a structured variable in the form of a flat name
list.

Buffer specifier

The buffer specifier is an arbitrary identifier that is interpreted by the concrete device
the variable is mapped to. Using buffer specifiers enables structuring of device address
spaces or data areas.

Mapped data type

The mapped data type is the device data type that must be mapped to the variable
data type. Concordance of the two data types is not required. The necessary conver-
sions are done by the CCS service (if possible).

Conversion function (“conversion” “=” FuncRef)

Example:

 conversion=MultFloat(10)

A conversion function reference can be supplied to realise transformations to variable
values on their way from and to the device. The function class of the function reference
must be conversion.

Extensions for address based mapping

When address based mapping is used there is a possibility to map bits or even bit
ranges rather than bytes words or double words to arbitrary variables. This can be
done by specifiying a bit position or a bit range to the address separated through
colon.

bit1 bool map short {5:1}
maps bit no 1 of word 5 to a bool variable

bit1 uchar map short {5:0-3}
maps bit no 0,1,2 of word 5 to an unsigned char value

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -21-

Note: the organisation of bit and byte orders is left to the specific device interpreting
the notation. By default Intel bit and byte orders are used. Every device object can
override this order using a specific bit operator class that inherits from the class

cBitOperator.

Auto Address Increment

When mapping device data to structured variables, the required address list may not
be complete. Missing specifications are added automatically using an auto increment
mechanism:

Array[4] short map short {0}

 is the sane as

Array[4] short map short {0, 1, 2, 3}

Note: this mechanism is used and works only for address based mappings because
an auto increment can not be defined for names.

3.11Extending a CCS Service

There are 3 methods to extended CCS service functionality.

1. Adding user functions to the data model.

2. Adding application specific programs to the CCS service.

3. Adding application specific devices to the CCS service.

Functions that extend a CCS service

Custom specific hook functions are used as CCS extensions referred to in the data
model of a CCS service or as GUI extensions that must be declared in a declaration
file.

A user function must be associated with a function class. The function class preceeds
the function declaration and implies the semantic and circumstances of function execu-
tion.

User functions that are hooked into a CCS service are sometimes called model func-
tions because the their function declarations and references are part of the data mod-
el.

Filter functions (class filter)

Filter functions act as general purpose data providers for variables. They supply a
value when a variable is read and they execute some predefined action when a vari-
able is written. The return type of filter functions must be compatible to the data type of
the variable associated with.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -22-

Conversion functions (class conversion)

Conversion functions transform values on their way from and to devices. They are as-
sociated with the mapping of a variable to a device. The value to be transformed is
supplied as first argument to the function. This is an automatic argument and must not
be declared within the function declaration. The return type of conversion functions
must be compatible to the data type of the variable associated with.

Limit functions (class limit)

Limit functions supply a minimum and a maximum value for variable input. The return
type of limit functions must be compatible to the data type of the variable associated
with.

Unit functions (class unit)

Unit functions implement conversions between different physical units of a variable.
The return type of unit functions must be compatible to the data type of the variable
associated with.

Access functions (class unit)

Access functions implement access from host interfaces. Conceptual an access function
is similar to a filter function but restricts to the access over a host interface.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -23-

Using application specific programs tot extend CCS service functionality

An application specific program inherits from the base class cProgram. Task of a pro-
gram is to do application specific work that must be done in background. A typical ap-
plication ist to control or record variable values.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -24-

3.12Databases Contexts and Variables

To access CCS data a Shacira application uses the Set- and Get-Methods of a variable
object.

Variable objects are C++-objects of the class cVariable a variable can be identified
through the variable name. A variable object must be queried from a CCS database
that is represent by the so called context object.

A context object is a C++-object of type cContext. This context object houses all vari-
ables that are modelled in the corresponding. Data model. A context object subsumes
access to CCS services and access to variables in the CCS database.

All variables that live in a CCS database can be accessed using the method
cContext::Variable(CONST_STRING_T var_name). This method returns a pointer to
cVariable type object that offers an API for getting and setting values of the variable.
Beneath getting and setting values a cVariable type object offers methods to retrieve
variable state information and variable properties such as data type, precision.

Fig. 3-2 Context structure of a CCS database

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -25-

3.13Variables

Before handling CCS device aspects it is important to understand the central term of
“variable types”.

A variable type influences the interaction between variables and devices in a crucial
way. Actually a variable can be assigned to three different variable types:

1. A volatile variable (vartype = volatile) this is the default, when no vartype is spe-
cified

2. A set varibale (vartype = set)

3. An act variable (vartype = act)

Fig. 3-3 Variable read operation

Read operations on a variable access a device value only when they are of type volat-
ile. In the case of set and act type variables values are read from the internal buffer.

The values of act type variables are refreshed by the device cache, values of set type
variables are communicated only in one direction from the internal buffer to the
device.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -26-

Fig. 3-4 Variable write operation

Write operations on a variable set a device value only when they are of type volatile or
set. Trying to write to an act type variable generally leads to an error situation.

When setting the value of a set or volatile type variable, CCS first tries to set the value
on the device and refreshes the internal buffer only when this operation succeeds.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -27-

4How to Implement Application Specific Devices
What is a device or device object?

Every variable that is mapped to a specific device uses the device object to exchange
data with this device. For this purpose a device object has an abstract device inde-
pendent interface to perform this task.

When exchanging data with a device only the methods of the abstract interface are
used to exchange data by the variable.

What is needed is a sort of addressing scheme that can be referred to in the data
model. Shacira CCS offers a 2 level addressing scheme:

1. First level addressing using a buffer specifier that is a string

2. Second level addressing using either a numeric address (address based map-
ping) or a name (name based mapping).

The second level addressing allows mixing together address and name based map-
ping, thus mixing together both addressing types in one device object is not recom-
mended. In general the protocol to access device data poses a natural addressing type
to the device object implementation. For example PPCCOM and Siemens S7 are typic-
al address based, while OPC is typical name based.

The interpretation of both addressing schemes is left to the concrete device object im-
plementation. The concrete addressing scheme is transparent to the base system.

The first level addressing scheme using a buffer specifier is intended to address differ-
ent data areas, for example registers and logic words in the case of PPCCOM. Data
throughput considerations can affect the design as much as ease of implementation or
ease of usage when modelling device data.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -28-

Variable object

Read(buf_spec1, address1, buf1, nbytes1, buf_size1)
Write(buf_spec2, address2, buf2, nbytes2)

Concrete device
implements abstract device interface methods

Abstract device interface

Read Write ...

Read(“register”, 0x45, buf, 2, 2)
Write(“logic”, 0x48, buf, 2)

Data exchange over serial line,
ethernet, Shared memory, …
depending on the concrete device

lodreg(0x45, buf)
savreg(0x48, buf)

Fig. 4.1 Data exchange using a device object

When implementing a new device a device programmer designs a new class that in-
herits from cDevice, the base class for all devices.

The minimum interface a new device must implement are the two methods
device::Read(…) and device::Write(). This are the basic methods for exchanging data
with a device. The getter and setter methods device::Get(…) and device::Set(…) must
be reimplemented, when the device should support direct reading and writing of
Shacira base data types or strings.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -29-

The methods device::Cache(…) and device::Buffer(…) should be reimplemented, when
the device supports caching.

4.1Role of buf_spec, var_name and address arguments

4.2Bit Operators

Bit operators are used to interprete values of Shacira base types like long, ulong,
float, … to requirements originating from processor architectures of specific devices. It
addresses byte and bit orders of numeric datatypes.

4.3Device caching

Th task of a device cache is to maintain the actuality of act variable values as required
(specified in the data model).

To enable device specific caching strategies device specific caches are a means of CCS
service extensions. When an application (device) specific is needed the implemented
class must inherit from the cache base class cCache.

Some more general cache classes are already implemented within the Shacira CCS
Framework including an optmized address based cache (cBlockCache) and a simple
name based cache (cStringCache).

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -30-

5How to Implement Model functions
The first step in implementing a model function is to declare this function in a data
model. The function declaration must precede every usage (function reference) of this
function.

filter long filter1(long arg1);

The above function declaration declares the filter function filter1 that has one long type
argument called arg1.

When declared the function can be referenced later on in the data model:

..
filtered_var long
 description=”this is a filtered variable”
filter=filter1(27);

The function reference filter(27) is similar to a function call where concrete arguments
(27 in this case) are supplied. Translating the data model with the model compiler
mdlc adds a C-function prototype to the generated prototype file:

LONG_T filter1(cContext * _context, LONG_T _value, ULONG_T _flags, LONG_T _i1,
 LONG_T _i2, LONG_T _i3, LONG_T _i4, LONG_T arg1);

The C-function signature is not the one that we would expect. We declared only one
argument called arg1. But this argument is the last one in the argument list and there
are a couple of arguments that precede the declared argument. The preceding argu-
ments are so called arguments that are supplied to the function. Count and type of
automatic arguments differ among function classes.

_context is a pointer to the context the variable belongs to (the variable that contains
the filter function reference). _context enables to access informations that can be sup-
plied by this context; this includes accessing values from other variables.

_value is the current value of the variable at the time, when the function is executed.

_flags codes some information about the communication direction, when the function
is called.

_i1 … _i4 are the indices which denote the position the filter function is currently asso-
ciated with.

As a second example consider the following max function:

limit long MaxIndex(long which);

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -31-

5.1Automatic arguments of model functions

Function class Parameter Parameter type semantics

Filter _context CContext * Pointer to CCS con-
text

_i1, _i2, _i3, _i4 Long Indices of the selec-
ted data element

_value Same as return type Actual value

_flags Unsigned long Flags to control func-
tion execution

Conversion _context CContext * Pointer to CCS con-
text

_i1, _i2, _i3, _i4 Long Indices of the selec-
ted data element

_value Same as return type Value to be converted

_flags Unsigned long Flags to control func-
tion execution

Limit _context cContext * Pointer to CCS con-
text

_i1, _i2, _i3, _i4 long Indices of the selec-
ted data element

Unit _context cContext * Pointer to CCS con-
text

_value Same as return type Value to be converted

_flags Unsigned long Flags to control func-
tion execution

_i1, _i2, _i3, _i4 long Indices of the selec-
ted data element

Tab. 4-1 Automatic arguments of GUI function classes

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -32-

6How to Implement Application Specific Programs
To implement an application specific program the application programmer has to cre-
ate a new class that inherits from cProgram which is the base class for all programs
running in a CCS service,

A program or task is technically spoken a thread that runs in background. A program
will be “cycled” within a definable interval (default 500 ms). When the program is
cycled the virtual method Cycle() of the cProgram base class is called. To hook into the
program cycle the application programmer has to reimplement the Cycle method.

When the program starts running as a first step the virtual method Initialize() is called.
This method can be overloaded by the application programmer to do initializing stuff.

Beneath the Cycle method that is executed by the thread there are two further methods
that can be overloaded to extend program functionality.

1. ProcessEvent(cTransientObject * object)

2. ExecuteCommand(ULONG_T command)

ProcessEvent is executed when the program receives a CCS event (transient object).
This method is executed asynchronously to the Cycle method.

ExecuteCommand can be used to communicate synchronously from the user interface
with a program to activate some special functionality.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -33-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -34-

7Variable References
Before explaining the GUI Framework integration, an often used and often misunder-
stood term must be clarified to understand the Shacira Framework concept. Under-
standing the concept of variable reference is vital to integrate CCS data access into a
GUI framework. A variable reference thus is no GUI specific construction but it is one
of the major concepts to integrate a user interface with a CCS database.

For this purpose lets have a look on a two dimensional variable named “matrix1” that
lives in a CCS database:

database demo device=device1 {

 matrix1[5][10] float(2)
 vartype=set
 description="varioable definition for demonstration purpose"
 text="matrix1"
 dim1text="index 1"
 dim2text="index 2"
 persist=file;

};

To access data of this variable there is the known possibility to retrieve a pointer to the
variable object using the context:

cVariable * variable = context->Variable(“matrix1”);
if (variable != NULL) {
 /// variable exists within the database represented by context
 FLOAT_T value = 0;
 variable->Get(value, 3, 2, -1, -1, 0);
 /// now holds the value of variable matrix1, at position [3][2]
}

cVariable * variable = context->Variable(“matrix1”);
if (variable != NULL) {
 /// variable exists within the database represented by context
 variable->Set(10.5, 3, 2, -1, -1, 0);
 /// now the value of variable matrix1 at position [3][2] is set to 10.5
}

This method works fine and can be applied elsewhere in C++ application code.

The variable reference concept is an extension to this mechanism and is implemented
on top of the cVariable class (thus this is not transparent to the application program-
mer).

When using cVariable to retrieve a variable value an application programmer has to
retrieve a pointer to the desired variable and then gets the desired value by calling the
Get-method supplying the needed arguments to address position [2][3].

The variable reference approach integrates these two steps in one step.

A variable reference can be denoted by the following specification:

Matrix1[2]][3]

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -35-

Part of the API of a cContext object is the Method cContext::VarRef(CONST_STRING_T
var_spec). The VarRef method supplies a pointer to an object of class cVarRef. cVarRef
is the C++-class that holds a variable reference. The variable reference has an API
that is similar to the cVariable API. Methods to set and get values of a variable refer-
ence have a differ in signature from the cVariable versions.

To get a value from a variable reference the application programmer has to call Get-
Value instead of Get and SetValue instead of Set. The cVarRef signatures of the getter
and setter methods do not incorporate structure information (indices), because a varri-
able reference addreses exactly one variable position when calling GetValue or Set-
Value.

The following code snippets show the above examples but using a cVarRef object in-
stead of a cVariable object.

cVarRef * var_ref = context->VarRef(“matrix1[2][3]”);
if (var_ref != NULL) {
 /// variable reference has been successfully parsed
 FLOAT_T value = 0;
 Var_ref->GeValue(value);
 /// now holds the value of variable matrix1, at position [3][2]
}

cVarRef * var_ref = context->VarRef(“matrix1[2][3]”);
if (var_ref != NULL) {
 /// variable reference has been successfully parsed
 var_ref->SetValue(10.5);
 /// now the value of variable matrix1 at position [3][2] is set to 10.5
}

For the first look it seems, that the variable reference concept only saves typing work
for the application programmer in the sense that structure information are incorpor-
ated into the construction of the used object and therefore must not be specified when
calling Set or Get.

This is true but the usage of variable references instead of variables has some more
advantageous implications:

1. Variable reference structure can be supplied dynamically using other variable
references instead of constant indices

2. A variable reference can act as target of data change notifications. This offers
the possibility to use variable references as end points for CCS data change
events. A widget, that visualizes a variable value, uses this behaviour to auto-
matically change visual value representations in the GUI.

7.1Unlimited Variable References

To explain the usage of the first case let us consider a variable reference as a tree that
denotes the value of a variable at a specific position within the variable structure. For
this purpose we extend our demo database and add two additional variables called

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -36-

index1 and index2. These variables are standard variables of integral type that can
act as indices into the two – dimensional structure of matrix1.

database demo device=device1 {

 matrix1[5][10] float(2)
 vartype=set
 description="varioable definition for demonstration purpose"
 text="matrix1"
 dim1text="index 1"
 dim2text="index 2"
 persist=file;

 index1 long
 description="variable index helper variable "
 text="index1";

 index2 long
 description="variable index helper variable "
 text="index2";

};

Using the index variables it is possible to use a variable reference of the following
form:

Matrix1[index1][index2]

When getting or setting the value of this variable reference the selected position of the
affected value depends on the value of the variable index1 and index2. The next code
snippet shows the usage of this scenario.

cVariable * i1 = context->Variable(“index1”);
if (i1 != NULL) {
 i1->Set(2, -1, -1, -1, -1);
}
cVariable * i2 = context->Variable(“index2”);
if (i2 != NULL) {
 i2->Set(3, -1, -1, -1, -1);
}
cVarRef * var_ref = context->VarRef(“matrix1[index1][index2]”);
if (var_ref != NULL) {
 /// variable reference has been successfully parsed
 FLOAT_T value = 0;
 Var_ref->GeValue(value);
 /// now holds the value of variable matrix1, at position [3][2]
}

Instead of using variable references ist is possible to use free classed user functions to
determine index values of variable references.

Matrix1[fact(index2)][index2]

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -37-

This expression is also a valid variable reference where the index into the first dimen-
sion of the variable is determined by a function call to the factorial function fact(v) with
the value of index2 supplied as argument.

Fig. 7-1 shows the resolution tree for this simple variable reference.

Fig. 7-1 Resolution tree for a simple variable reference

A variable reference is unlimited in the sense that the resolution tree is not limited
neither in depth nor in width.

With this explanations in mind the integration of CCS data into the Qt GUI Framework
should be more comprehensive.

7.2Variable references as notification end points

To explain the usage of the second case let us consider a variable reference that shows
in any way the value of a variable reference. If the application programmer wants to
keep track with the current value the application programmer must implement a
mechanism to poll the variable for example every 100 milliseconds.

If there were an automatic event that signals the variable reference whenever the asso-
ciated value has changed polling the value actively would not be used to keep track
with the value of the variable reference. The C++ object cVarRef ahs a method to re-
gister with the CCS database for data change events. When a variable is registered it
receives data change events when the selected value of the variable has changed.

The received cDataChange object used to signal this situation holds the new value and
some context information about the variable.

Bound to a visual software component like a console, control or widget the variable
reference can change the visual representation when getting a data change notifica-
tion.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -38-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -39-

8Qt GUI Framework
In general the type of user interface used in the Shacira Framework is neither restricted
to a specific user interface technology nor is it restricted to a specific programming
language.

Actually a user interface based on the Trolltech Qt library has been developed to sup-
port comfortable designing of user interfaces with a full interface to CCS Services. The
rest of references this Qt based GUI Framework as the GUI Framework.

A GUI framework should use both the synchronous and the asynchronous interface to
CCS Services to fully benefit from the functionality offered by a CCS Service. The Qt
GUI Framework uses all functionality that is offered by a CCS Service.

8.1Information flow in a Shacira application

Figure 8-1 shows the information flow within Shacira applications. Dotted arrows de-
note asynchronous uncoupled communication via CCS-Events. Integral arrows specify
synchronous communication via a Shacira context.

Program Database

Widget

CCS-Service

GUI

Timer

Fig. 8-1 Information flow between CCS service and GUI application

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -40-

8.2Software architecture of the GUI Framework integration

Together with CCS services Shacira comes with a GUI-Framework that is based on
Trolltechs Qt graphics library. The Shacira GUI-Framework consists of a frame class
that can hold an arbitrary number of so called information pages. The application
frame structures these information pages and offers a mechanism to navigate through
the pages.

generates

generates

Qt graphics library

CWidget plugin

Qt uic

Qt Designer

Forms *.ui

C++ Siurce code *.cpp, *.h

uses

uses

C++-Compiler,Linker

Fig. 8-2 Software Production Environment Integration of the GUI-Framework

8.3User interface structure

The structure of a GUI application in the Shacira Framework consists of an application
frame that houses a couple of page groups where every page group houses a couple
of information pages.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -41-

Fig. 8-3 General structure of a user interface

An Application frame is a Qt Form that acts as frame for all user defined pages of an
application. CAppFrame is the base class for an application frame and it is realised
as Qt widget.

The application frame structures and organises information pages that are the top
level widgets to integrate different widgets for showing and manipulating CCS data.

To design and layout information pages Trolltechs Qt Designer can be used. Qt De-
signer enables application programmers to layout and design information pages in a
Wysiwyg environment.

To interface to CCS services from within information pages, a couple of so called CCS
aware Widgets (CWidgets) have been developed on top of the Qt plugin mechanism.
The Qt plugin mechanism is a possibility to realize UI-Controls (widgets) that have
builtin custom specific functionality. CWidgets integrate fully with Qt Designer. Every
widget can be placed anywhere on an information page. The functionality of every
CWidget can be configured to specific needs with the property Editor of Qt Designer.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -42-

The major mechanism to integrate a widget with CCS data access are variable refer-
ences that are incorporated naturally into the widget definitions, and that are part of
almost every CWidget.

8.4General CWidget functionality

To interface with a CCS service every CWidget has virtual methods to connect to a
CCS service:

virtual void CCSSetContext(NODE_PTR node, CONTEXT_PTR context);
virtual void CCSNewValue(CONST_STRING_T value, ULONG_T id, ULONG_T time_offset,
 UCHAR_T data_type, ULONG_T size);
 virtual void CCSNewValue(BUF_T buf, ULONG_T id, ULONG_T time_offset,
 UCHAR_T data_type, ULONG_T size);
 virtual void CCSEvent(TRANSIENT_OBJECT_PTR object);

CCSSetContext sets the widget context when the system is starting up. The first para-
meter node has currently no meaning, the second parameter context is a pointer to the
CCS context, the widget can connect with.

CCSNewValue is called every time a variable reference, that is associated with the wid-
get changes his value. The argument id identifies the variable reference that caused
the data change event. If a widget uses more than one variable reference different
variable references can be distinguished by using a unique id when initializing the ref-
erence in CCSSetContext. When a CCSNewValue is called on the widget, the id helps
to identify the source of the data change event.

The argument time_offset carries the time difference to the last occurrence of a data
change event of an associated variable reference.

The argument data type supplies the data type code of the associated variable.

The argument size contains the element size of the (value size) of the associated vari-
able.

The method CCSNewValue comes in two versions. The first version supplies a string
type value, the second version supplies a BUF_T (memory pointer) value. The second
version is used for variables of type SH_BYTE.

Fig. 8-4 shows the event propagation originating elsewhere in the associated CCS ser-
vice up to a widget within the user interface.

The framework dispatcher is a mechanism that selects and routes events originating in
the CCS service to the CWidgets that are linked to specific events.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -43-

CCS Event

CCS service

Framework Dispatcher

Qt event loop

CWidget

CCSNewValue(...)
CCSEvent(...)

Fig. 8-4 Event Propagation from Services to a CWidget

From an abstract point of view every CWidget interfaces to a CCS service through one
or more variable references. If variable values change within the CCS service the wid-
get is signalled and receives the new value of the associated variable reference.

As a consequence the widget changes its internal state. The new internal state of the
widget will be expressed in the visible area with the next repaint of the widget.

All CWidgets that can show CCS data items behave in this way. For the visualization of
data there is no direct connection to a CCS service. A CWidget is an autonomous
GUI-Control that reacts on CCS service events.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -44-

CWidget

visible area of the widget

internal state
of the widget

CCS Event

CCS service

Fig. 8-5 General CWidget update functionality

When using widgets that allow data entry this situation is extended to synchronous
communications between a widget and a CCS service. In this case the variable refer-
ences are used to receive data change events and to manipulate CCS data.

8.5CWidget Data Input functionality

Data input of a CWidget is - like CWidget update functionality - based on a variable
reference. Data input is realized as a three step commit mechanism.

1. Call a plausibilty function on the input.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -45-

2. Call a user function on the input.

3. Set the associated variable reference value to data input.

If one of the three steps fail, the subsequent steps are not executed and the input value
will be rejected. This input mechanism is used by every CWidget that offers data entry
functionality.

8.6General CWidget properties

For different types of information representation and manipulation, the CWidget plu-
gin offers different widget types. There is a set of properties and functionality that every
CWidget will expose.

Dark (blanking) functionality

Every CWidget is involved into the dark (blanking) functionality of the GUI framework.
The blanking functionality allows application programmers to bind every widget to a
C-style function called dark function. This function determines via return value the vis-
ible state of a widget. With this mechanism every widget can be shown, hidden or dis-
abled on base of a free programmable function.

As a consequence every CWidget offers the property DarkFuncRef

Property DarkFuncRef: This property of type string holds the function reference that
links to a user defined function to decide if the corresponding widget should be shown,
disabled or hidden.

Event receiver

Every widget that exposes a variable reference receives data change events. All other
transient objects can be received by configuring the EventFilter property. All other tran-
sient objects that originate from CCS services are called general events.

Every widget can act as receiver of general events originating in the CCS service. A
widget can filter the type of events it wants to receive and act upon. By default a widget
does not receive any general events.

Property EventFilter: This is a property of type enumeration that enables to configure
a widget to receive non standard events from a CCS service (data change events are
standard events). Every CWidget has this property.

Framework specific signal slot mechanism

To overcome the need to directly connect signals and slots of two widgets, a similar
mechanism based on user functions has been added to the GUI framework.

A widget can carry a so called qualified name and act as signal sender. All widgets
that want to be signalled by this widget can register with the sender. If a widget wants
to listen to a widget that emits signals, the property listen must be set to true and the
property ListeningTo must be set to the qualified name of the signalling widget.

The emitted signal is an integer code that identifies signal origin.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -46-

To make this mechanism freely programmable, 2 user functions can be supplied to
adapt the necessary functionality. Normally every widget signals exactly one signal in a
certain situation (for example SIG_BUTTON_CLICKED when clicking a button). The
signal filter function changes the signal code to a user specific signal code. After a sig-
nal was emitted, all slot functions of the widgets, that listen to the signalling widget are
called. The user specific (filtered) signal is supplied to the slot function.

This mechanism is similar to the Qt signal slot mechanism but it is more general and
easier to use. The communication mechanism is restricted to integer coding.

Property QualifiedName : This is a property of type string that supplies a qualified
name to the widget. This is a name that can be referred to when listening to signals
emitted by other widgets in an application. This name does not change when a widget
is cut and pasted to another location within the GUI.

Property Listening : This is a property that sets a widget to the listening state, that
means a widget listens to signals emitted by other widgets in the application.

Property ListeningTo : This property lets a widget listen to the signals emitted by an-
other widget whose qualified name matches this property.

Property GUISignalFilterFunc : This is a property of type string that links to a user
defined function that filters signals emitted by the widget. Every widget emits signals of
type unsigned long. Other widgets within the GUI can listen to this signals. Before
emitting a signal the associated filter function substitutes the original signal with a user
defined signal.

Property GUISlotFunc : This is a property of type string that links to a user defined
function that is called when a widget receives a signal from another widget.

Widget Access Properties

Besides the dark functionality every CWidget has properties to control widget access
based on a user group id, that can be set using the class cUserInfo and some methods
of the CAppFrame API.

The properties describe widget access regarding the current user group id. 8 user
groups can be set and controlled by every widget. The properties are named Group0
to Group7. For every group access property following values can be specified:

1. WriteAccess : The user has full unrestricted access to the widget. Input is en-
abled.

2. ReadOnlyAccess : The user has read access to the widget. Input is disabled.

3. NoAccess : The has no access to the widget. The widget is hidden for the user.

When a widget carries a dark function there is a potentially a conflict between the re-
turn value of the dark function and the current access specification for the specific user.
In this case the following rules apply.

dark result widget access widget state

ElementFree WriteAccess enabled

ElementFree ReadOnlyAccess disabled

ElementFree NoAccess hidden

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -47-

elementDisabled WriteAccess disabled

elementDisabled ReadOnlyAccess disabled

elementDisabled NoAccess hidden

elementHidden WriteAccess hidden

elementHidden ReadOnlyAccess hidden

elementHidden NoAccess hidden

Variable References

Every CWidget can be bound to a CCS variable value by specifying a variable refer-
ence. The variable reference then receives data change events (transient objects of
type cDataChange). A data change event signals that the widget should show (com-
municate) this change.

Property VarRef: This property of type string holds the variable reference.

Not every widget offers this property because in the case of general containers like
CFrame no semantics is defined for this situation.

8.7Input Widgets

Common to all input widgets is a triple of properties. PlausFuncRef, a function erefer-
ence that implements input validation, UserFuncRef a function reference that imple-
ments subordinate processing and VarRef, a variable reference as the target for input
operations.

Property PlausFuncRef: This is a property of type string that links to a user defined
function that decides if the input value should be rejected or not. The action to take is
signalled via return value. This property will only be used with widgets that enable data
input.

Property UserFuncRef: This is a property of type string that links to a user defined
function that decides if processing of input data should be continued or cancelled. The
action is signalled via return value. This property will only be used with widgets that en-
able data input.

Property VarRef: This is a property of type string that links to an element value of a
variable defined in the underlying data model. In general every CWidget that shows or
manipulates variable data has this property.

8.8Application Frame CAppFrame

An Application frame is a Qt Form that acts as frame for all user defined pages of an
application. CAppFrame is the base class for an application frame and it is realized
as Qt widget.

The application frame adds special functionality that is targets application specific is-
sues like language switching.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -48-

Application frames are layed out using Qt designer. The concrete design of the applic-
ation frame is not restricted. But to profit from the builtin functionality there are some
aspects that must be considered. An application specific frame must be derived from
the base class CAppFrame.

virtual methods of an application frame object

CAppFrame contains some virtual methods that must be reimplemented by the con-
crete frame class. The derived application frame overloads these methods to adapt to
the internal mechanisms of CAppFrame like navigation facilities resource manage-
ment and builtin functions.

virtual CFrame * GetNodeContainer();
This method supplies a pointer to a CFrame type container where node navigation
buttons are to be placed.

virtual CFrame * GetGroupContainer();
This method supplies a pointer to a CFrame type container where the page group nav-
igation buttons are to be placed.

virtual CFrame * GetPageContainer();
This method supplies a pointer to a CFrame type container where the concrete inform-
ation pages are to be placed.

virtual CFrame * GetSoftkeyContainer();
This method supplies a pointer to a CFrame type container where the softkey buttons
of the pages are to be placed.

virtual CFixText * GetPageHeader();
This method supplies a pointer to a CFixText type widget where the title of an individu-
al information page will be placed.

virtual CFixText * GetStatusBar();
This method supplies a pointer to a CFixText type widget where status information is to
be placed.

virtual void LoggedOff(CONTEXT_PTR context, USER_INFO_PTR_T user_info,
 BOOL_T automatic);
This method is called, when a logoff occurs. The circumstances of the logoff is commu-
nicated via the argument automatic. The argument context is a pointer to the current
context that can be used to access or set variable information. The argument user_info
is a pointer to a copy of the user info at the time when the logged off user has lagged
in.

Global functions to bootstrap the user interface

To hook an application frame and the corresponding page list into the runtime system,
the application specific code must offer two global functions.

CAppFrame * CreateAppFrame();

CreateAppFrame creates the application specific frame and returns ist as a pointer.

PageList * CreatePageList(QWidget * parent, cNode * node)

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -49-

PageList creates the list of pages that must be managed by the application frame and
returns this list.

The overloaded methods of CAppFrame and these two functions will hook all custom
specific GUI-code into the base framework.

CAppFrame methods

An application frame object supplies the application programmer with a lot of func-
tionality. A programmer has access to this functionality in every GUI function.

Page Stack methods

void ShowPage(QCString page_name);
Shows the page with the name page_name. If necessary the related page group will
be switched.

void ShowLastPage();
Shows the previous page selected. If necessary the related page group will be
switched.

void Refresh(int refresh_type, BOOL_T delayed = false);
Executes a refresh of type refresh_type on the user interface. When delayed is true the
refresh operation is delayed until the calling function has been executed.

The following refresh_types are possible:

• EVENT_REFRESH: all dark functions are executed immediately to adapt the
user interface appearance to a new state.

• DATA_REFRESH: all values of all variable references within the user interface
are read and fed into the standard event signalling mechanism. This function
behaves as if all values of the variable references will change.

CPage * ActPage();
Returns a pointer to the page that is currently shown (visible).

CPage * GetPage(CONST_STRING_T page_name);
Returns a pointer to the page specified by page_name. Returns NULL if this page is not
present.

QCString ActPageName();
Returns the name of the page that is currently shown (visible).

Language switching related methods

bool SetNewLanguage(CONST_STRING_T language);
Switches the language to the language specified by the argument language. This oper-
ation succeeds, when a translation file with name <language>.qm exists.

QCString ActLanguage();
Returns the current language as string.

Printing related methods

void PrintActPage(ULONG_T flags = 0);

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -50-

Prints the current page to the system printer.

void PrintPage(CONST_STRING_T page_name, ULONG_T flags = 0);
Prints the page specified by page_name to the system printer.

QImage GetImage(CONST_STRING_T page_name = NULL, ULONG_T flags = 0);
Returns an image of the page specified by page_name instead of printing it on the sys-
tem printer.

The flags argument can be supplied to control print output:

PRINT_FRAME prints the page together with the application frame.

Dialog and wizard related methods

void RegisterDialog(QDialog * dialog);
Registers a dialog with the app frame.

void RegisterDialog(QWizard * dialog);
Registers a wizard with the app frame.

int ExecDialog(CONST_STRING_T dialog_name);
Executes a dialog (wizard or dialog).

QWizard * Wizard(CONST_STRING_T name);
Returns the wizard object with name name, if such a wizard has been registered, NULL
otherwise.

QDialog * Dialog(CONST_STRING_T name);
Returns the dialog object with name name, if such a dialog has been registered, NULL
otherwise.

User management methods

void SetGroupId(ULONG_T id);
Sets the group id of the current user.

void SetUserInfo(USER_INFO_PTR_T user_info);
Sets the whole user information.

USER_INFO_PTR_T GetUserInfo();
Returns a pointer to the user information of the current user.

void Login(USER_INFO_PTR_T user_info);
Logs in a new user. The whole user information is supplied as argument

void Logoff(BOOL_T automatic = false);
Logs off the current user. The argument automatic signals an automatic logoff (done
by the system).

Help related methods

void ShowHelp();
Executes (pops up) the Help dialog.

void HideHelp();
Closes (hides) the Help dialog.

BOOL_T HelpActive();

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -51-

Returns true if the help dialog is active false otherwise.

8.9CWidget types

Container widgets

CFrame

This widget is derived from the Qt QFrame widget.

CGroupBox

This widget is derived from the Qt QGroupBox widget.

CbuttonGroup

This widget is derived from the Qt QButtonGroup widget.

Button widgets

CWidget Button widgets are derived from the associated Qt button widgets and exten-
ded by the general CWidget functionality.

CtoolButton

This widget is derived from the Qt QToolButton widget.

CPushlButton

This widget is derived from the Qt QPushButton widget.

Data input widgets

CStateButton

This CStateButton is a special button widget that can be supplied with a variable refer-
ence. The value of the associated variable reference is shown by distinct icons or textu-
al representation. At most 5 distinct states can be shown.

Clicking a CStateButton changes the value of the associated variable reference to the
next valid state.

The mapping from states to variable values can be configured through properties with-
in the property editor of Qt Designer.

CReqValue

A widget of type CReqValue can be used to show and manipulate textual representa-
tions of variable data.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -52-

CIndReqValue

A widget of type CIndReqValue can be used to show and manipulate textual represent-
ations of variable data, that are indexed.

CRadioButton

A widget of type CCheckBox can be used to show and manipulate 0/1 representations
of variable data.

CCheckBox

A widget of type CRadioButton can be used to show and manipulate 0/1 representa-
tions of variable data.

CComboBox

A widget of type CComboBox can be used to show and discrete integer representa-
tions of variable data.

Display widgets

CFixText

CActValue

CGraphic

CProcGraphic

CListView

CVideo

CAlarmWidget

CTable

8.10Organization of custom specific GUI code

To organize custom specific GUI code the following directory structure is recommen-
ded:

Starting from a custom specific root directory <customdir> the following subdirector-
ies are used to organize GUI-descriptions and functions.

Common-Directory <customdir>/Common (<commondir>)

The common-directory should contain all code that is common to the development of
all applications. A common-directory is structured into subdirectories to contain differ-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -53-

ent types of custom specific code. The structure of the common-directory acts as tem-
plate for subdirectories containing code for application variants. A common may con-
tain subdirectories with the same structure containing the code for an application vari-
ant.

Subdirectory Widgets <widgetdir> contains custom specific Qt widgets that inherit
from existing widgets like Qt-widgets or CCS-aware CWidgets.

Subdirectory Forms <formdir> contains page descriptions (.ui) designed with Qt de-
signer and the generated files of the tools uic and moc.

Subdirectory Funcs <funcdir> contains a data model, user function descriptions, the
generated files of mdlc and the function implementations.

Subdirectory Programs <programsdir> contains the code for CCS-service control
programs.

Subdirectory Init <initdir> contains the code for CCS-service initialisation functions.

Subdirectory Text <textdir> constant application specific text, that is not part of the
GUI (that is not located somewhere in widgets or pages).

Custom-Base <customdir>/CustomBase

The custom base directory contains the three base files that act as object and function
factories for custom specific devices, custom specific control programs and user func-
tions.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -54-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -55-

9How to Implement GUI functions
Custom specific hook functions are used as CCS extensions referred to in the data
model of a CCS service or as GUI extensions that must be declared in a declaration
file.

A user function must be associated with a function class. The function class preceeds
the function declaration and implies the semantic and circumstances of function execu-
tion.

9.1Functions that extend the GUI

Dark functions

Dark (blanking) functions to show, hide or restrict GUI widgets. The return type of a
dark function is always a long value. Return values can not be specified for plausibility
functions.

The return value indicates the action to be taken.

elementVisible: show the widget

elementDisabled: show the widget but restrict (disable) input

elementHidden: hide the widget

Plausibility functions

Plausibility functions are used to check the validity of data input. Data input is supplied
as first argument to the function. This is an automatic argument and must not be de-
clared within the function declaration. The return type of a plausibility function is al-
ways a long value. Return values can not be specified for plausibility functions.

The return value indicates the action to be taken.

actionProceed: input is valid and proceed subsequent processing

actionReject: reject input and terminate subsequent processing

actionIgnore: accept input but terminate subsequent processing

User functions

User functions are used to activate an action after the successful validity check on data
input. Data input is supplied as first argument to the function. This is an automatic ar-
gument and must not be declared within the function declaration. The return type of a
plausibility function is always a long value. Return values can not be specified for
plausibility functions.

The return value indicates the action to be taken.

actionProceed: accept input and proceed subsequent processing

actionReject: reject input and terminate subsequent processing

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -56-

actionIgnore: accept input but terminate subsequent processing

Button functions

A button function is similar to a user function without automatically supplying input
data in the first argument (there is no input data associated with buttons).

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -57-

The function prototype generated by mdlc differs from the original declaration. In gen-
eral one or more parameters are added in front of the parameter list. Which of the so
called auto parameters are generated depends on the function class.

Function class Parameter Parameter type semantics

Dark (blanking) _context cContext * Pointer to CCS con-
text

_abstract_widget WIDGET_PTR Pointer to abstract
widget

Button _context cContext * Pointer to CCS con-
text

_abstract_widget WIDGET_PTR Pointer to abstract
widget

Plausibility _context cContext * Pointer to CCS con-
text

_abstract_widget WIDGET_PTR Pointer to abstract
widget

_input const char * Supplied input value

User _context cContext * Pointer to CCS con-
text

_abstract_widget WIDGET_PTR Pointer to abstract
widget

_input const char * Supplied input value

GUISignalFilter _context cContext * Pointer to CCS con-
text

_abstract_widget WIDGET_PTR Pointer to abstract
widget

_signal unsigned long Original widget sig-
nal

GUISlotFunc _context cContext * Pointer to CCS con-
text

_abstract_widget WIDGET_PTR Pointer to abstract

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -58-

widget

_signal unsigned long Original widget sig-
nal

_sender WIDGET_PTR Pointer to sender of
the signal

Embedded _context cContext * Pointer to CCS con-
text

Free - - -

Tab. 7-1 Auto parameters of GUI function classes

The declared input parameters of a user function follows the set of auto parameters.
The first of the auto parameters is a pointer to the CCS context. The CCS context point-
er can be used to accesss whatever CCS data is used to realize the function see
chapter 8.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -59-

10How to Implement Application Specific Widgets

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -60-

11System Startup Procedure
When a Shacira application starts up some rules must be considered. These rules differ
depending on the startup mode of the Shacira apllication (client or server).

11.1Client Startup

11.2Server Startup

Startup of a GUI based Shacira application starts with the user interface as master and
the CCS service as Slave. Startup consists of 5 phases that can be assigned either to
the GUI or the CCS service.

1. Create and display of the Startup Window (GUI).

2. Loading (instantiating and creating) the CCS service context (CCS).

3. Create information pages and link all the widgets into the CCS service (set the
context, create variable and function references).

4. Starting the CCS service (load peristent data, starting devices, programs, and
general infrastructure, synchronize data with devices, …).

5. Display the Graphic User Interface.

Custom specific functionality can be hooked to the Startup process by means of inple-
mentation of 2 functions that are called by the Startup process whenever a specific step
in the procedure is reached. These Functions are _MdlInit (CCS service) and
_GUIInit(GUI). The specific step within the start up process is communicated the func-
tion argument step.

Figure 11-1 shows an overview of the startup procedure. The grey shaded area de-
notes initialisation activities that are static. This means, the states generated by the
functionality of this phases persists subsequent start ups.

The static phases can be assigned to fix suspend activities.

The states of all other phases can differ from one start to the next because they take
into account data that persists system shutdown.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -61-

Phase 2
load CCS service

Phase 1
Create and display
application window

Phase 4
start CCS service

Phase 3
Create information pages
and link into CCS service

GUI CCS

Phase 5
initialize widgets and
display final GUI

Fig. 11-1 Start Up Procedure

Initialisation steps of the CCS service

step reached state consequences

Phase 2

SH_PRE_CONTEXT_INSTANTIATION Nothing happened at all

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -62-

SH_PRE_CONTEXT_CREATION CCS has parsed the as-
sociated data models and
will call the method Cre-
ate immediately on the
context

SH_POST_CONTEXT_CREATION CCS created the context
successfully.

Resources like memory and device map-
pings are already created for every vari-
able of the context. Now it is possible to
set and get data from a variable. Never-
theless variable data is not yet initial-
ized.

SH_POST_CONTEXT_INSTANTIATION The context object is com-
pletely instantiated.

Phase 4

SH_PRE_SYSTEM_STARTUP First step of this phase.

SH_PRE_LOAD_DATA First dynamic step. After
this step the process will
check for valid persistent
data and load it, or other-
wise initialize all data.

SH_INITIALIZE_DATA This step only occurs,
when the whole data is
initialized (no valid per-
sistent data found)

SH_DATA_INITIALIZED This step occurs after the
data of all variables is ini-
tialized.

After this step correctvariable initialisa-
tion is guaranteed (either by persistent
data or a general init)

SH_PRE_UPLOAD

SH_POST_UPLOAD

SH_PRE_DOWNLOAD

SH_POST_DOWNLOAD

SH_CACHE_IS_FREE This step is called, after
all buffers are switched
of.

From this point on full device access is
guaranteed.

SH_POST_SYSTEM_STARTUP Last step of this phase.

Initialisation steps of the GUI

The phases of GUI initialisation are mainly determined by virtual methods that are
called in specific GUI start up phases.

1. CwidgetBase::CCSSetContext(…)

Called in phase 3.

Only variable references should be created and initialised. At this point the data of
variables is not yet initialised.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -63-

2. CwidgetBase::Setup(…)

Called in phase 5.

Variable data related stuff can happen here.

3. UserInitfunction

Called in phase 5 but after the virtual Setup method.

The same

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -64-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -65-

12Tools

12.1Developer Tools

Data-Model-Compiler mdlc

The data model compiler mdlc.exe can be used to

• Check the syntactical correctness and validity of a data model

• Generate stub code for the implementation of user functions

• Generate text file for localisation

mdlc is a command line tool with following usage:

mdlc input=<input_file> header=<prototype_file>
 table=<table_file> strings=<text_file>

input_file is the file that contains the data model.

header_file is the file where mdlc places C prototype declarations of the declared user
functions.

table_file is the file where mdlc places the function address table for user functions.

text_file is the file where mdlc places the localisable strings of the data model.

mdlc can be integrated into the MS Visual C++ build process.

12.2Runtime Tools

Runtime tools are offered to simplify testing and projecting.

System Console

A sytem console (program scons) enables access to running CCS services. Using a sys-
tem console, all variables of a running CCS service can be shown and manipulated.

Command line arguments

• RootName=<name of the root object> (default CCSClient)

System console offers the following commands.

lc (list contexts)

Shows available contexts (CCS services).

sc <context name> (set contexts)

Connects to a context specified by <context name> .

ac (active context)

Shows the name of the active context (this is the last context that has been successfully
set with sc).

lv (list variables)

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -66-

Shows all available variables of the active context. Th listing includes type and structure
information.

<variable reference> (variable query)

Query the value of the variable denoted by <variable reference>.

<variable reference> = <value> (variable manipulation)

Set the value of the variable denoted by <variable reference>.

lp <program file name> (load program)

Loads an SCPL program.

ep <procedure name> (execute procedure)

Executes the SCPL procedure specified by <procedure name>.

Info Console

Info console (program icons.exe) shows CCS service messages directed to a UDP port.

Command line arguments

• Port=<port> (default 9500)

Channel Manager

The channel manager (cmgr.exe) starts and stops event channels for event driven re-
mote communication.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -67-

13Configuration
CCS services and CCS client programs can be configured using a flexible hierarchical
configuration scheme. The scheme models typed objects with typed properties. This
scheme is actually implemented on top of Files similar to Windows-Ini files. Objects
map to chapters, object properties map to property lists within an objects chapter.

The structure of a configuration is defined by a meta definition (similar to XML dtd)
held in a file called definition file (in general the file name is Shacira.def)

The starting point of a configuration is a root object that must be specified, when start-
ing a CCS service or one of the client programs. The type of the root object can be
freely chosen for a specific configuration. In genera the type of the root object differs
for different kinds of CCS application. A CCS service needs a root object of type Pro-
cess, a CCS GUI application needs a root object of type UserInterFace.

Basic object property types:

Integer (integer numeric valuel)

Boolean (true, false, ja, nein)

Object Reference (a reference to another object)

String (arbitrary character sequence)

Enum (value enumeration)

Sorted lists (vectors) of the basic types.

Every configuration object has a name. The object name is the chapter name of an
object description as realized actually.

Every property of an object is represented by a pair <property name> = <property
value>. Property names are checked for validity (only property names specified in the
configuration scheme for this object are valid), property values are checked for type
correctness.

Not every property that is specified in the configuration scheme must be present in a
concrete object description.

Mandatory properties are determined by the application that is to be configured.

Configuration objects of a CCS service

The following tables list the description of actually available configuration objects of Al
CCS service. The Shacira.def file defines the configurable objects and their properties.
It is comparable to a document type definition used in XML definitions. To get more in-
formation about user defined types refer to:

Shacira.def

Configuration object

Configurationj Description of a Shacira configuration

Path Vector<String> Additional paths where configuration files

Version: 1.5 19.Jan. 07

http://Shacira.def/

User Documentation: Shacira Page -68-

are located

Files Vector<String> Names of additional configuration files

DefFile String Name of the file that supplies object descrip-
tions

Process object

Process Type Description of a Shacira process ob-
ject

Resources obsolete

IdleTime obsolete

PulseInterval Unsigned Interval to pulse connection informa-
tion of its cells in ms

ShutDownControlTime Unsigned Maximuml time to shut down a
shacira process

ProxyReceiver Vector<ProxyReceiver> List of proxy receiver objects to be in-
stantiated by the process

ProxySender Vector<ProxySender> List of proxy sender objects to be in-
stantiated by the process

Receiver obsolete

Sender obsolete

Description String Textual description of the shacira pro-
cess

Cells Vector<Cell> List of Cells to be instantiated and
started by the process)

Cell object

Cell Type Description of a Shacira cell object

CellName String The name of the cell. Cell names are
inherited by contexts. Services are ex-
posed via a cell name. Connections
to contexts can be established using
the cell name.

When CellName specifies a variable
name in the application data model,
the content of this variable is used as
cell name.

Description String Textual description of the shacira cell

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -69-

CycleSpec obsolete

Devices Vector<Device> List of devices that should be instanti-
ated and started by the cell

Interfaces Vector<Device> List of device interfaces that should be
instantiated and started by the cell

Devices Vector<Device> List of device objects that should be
instantiated and started by the cell

Programs Vector<Program> List of program objects that should be
instantiated and started by the cell

Channels Vector<Channel> List of channels that should be instan-
tiated and started by the cell

Connections Vector<Connection> List of connections that should be es-
tablished by the cell

CorbaService bool If true a corba object is exposed

Active bool If false the cell is idle

Context Context Asociated cell context object. The con-
text is parsed and created when the
cell is instantiated

Context object

Context Description of a Shacira context object

ContextName String Name of the context

Files Vector<String> List of model files that describe the context data-
base

SymbolFiles Vector<String> List of symbol files used within the context

Device object

Devicej Description of a Shacira device object

DeviceType String Type of device

Verbose bool Protocol on/off

TimingProtocol bool Enable timing protocol

SerialChannel SerialChannel Reference to a serial channel object

BaudRate BaudRate Device baud rate if needed

Parity Parity Device parity if needed

Handshake Handshake Device handshake if needed

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -70-

Charlen Charlen Device character size if needed

StopBits StopBits Device stop bits if needed

StartBits StartBits Device start bits if needed

ReadPort Unsigned UDP read port for PPCCOM over ethernet

WritePort Unsigned UDP write port for PPCCOM over ethernet

Host String Server host name or IP-Address (server is PLC) for
PPCCOM over ethernet

IscosNo Unsigned Bus address of PLC

BaseDevice Device Base device for cascading device structures

Program object

Program Description of a Shacira program object

ProgramType String

DebugLevel Unsigned Switch for debug trace

IdleTime Unsigned Cycle interval in ms

Serial Channel object

SerialChannel Description of a Shacira serial channel

ChannelType SerialChannelType Type of the serial channel

CHANNEL_STANDARD
Standard com port

CHANNEL_SOCKET

Socket based serial channel W&T spec

CHANNEL_VSOCKET

Socket based serial channel 2i spec

Verbose bool Protocol on/off

PortName String Name of the com port (only interpreted by a
standard channel)

IPAddress String IP-Address of the service (only interpreted by the
socket channels)

RXPort Unsigned UDP-read-port (only interpreted by the socket
channels)

TXPort Unsigned UDP-write-port (only interpreted by the socket
channels)

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -71-

IsBus bool Set to true when a bus based protocol is used
(only for RS 485 or RS 422 possible)

Connection object

Connection Type Description of a Shacira connection object

From String Name of a channel or program as source of the
connection

To String Name of a channel or program as destination of
the connection

Channel object

Channel Type Description of a Shacira channel object

ChannelType ChannelType Type of the channel object

LocalChannel is a channel that does not cross
process boundaries

RemoteBridge is a channel that crosses process
and network boundaries

To String Name of a channel or program as destination of
the connection

RemoteBridge bool Also local channels are enabled to act as remote
bridge if RemoteBridge is set to true

RemoteName String Name of the event channel to be used for remot-
ing (only interpreted when RemoteBridge is true)

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -72-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -73-

14Shacira API
The Shacira API can be from different points view:

• The view of an application programmer

• The view of a system programmer

14.1Application Programmer View

cResources class

The cResources class adds static functionality to a Shacira process. It serves as carrier
of global informations that can be exchanged among the different components even
between the GUI interface code and the CCS service code.

cResources manages globally shared resources such as path specifications for the loc-
ation of different system files.

It offers functionaliity for logging and tracing that can be used elsewhere in the applic-
ation code.

cContext class

The most interesting object that can be used by an application programmer is a con-
text object or context reference. A context object is of type cContext. A context object is
directly supplied to

• All User-Functions except free user functions.

• All control programs

As a consequence application programmers are not burdened creating or getting the
right context object.

A context object offers the following services:

• Create variable reference to access variable data

• Get Variable objects to access variable data

• Create user function references to activate functionality

With context objects full access to data modelled in the data model represented by the
context is possible.

cVarRef class

The cVarRef class is the C++ object

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -74-

cVariable class

cUnitDef class

Static objects

Static objects are C++ objects that are instantiated when a CCS service starts up and
live until system shutdown. Static objects are can raise events (transient objects) and
“raise” them to propagate this objects over the CCS channel system. Static objects are
the origin of CCS events.

The following classes inherit from cStaticObject:

• Programs (cProgram)

• Devices (cDevice)

• Channels (cChannel).

Transient objects

Transient objects are C++ objects that carry information in the asynchronous commu-
nication mechanism of CCS services. Transient objects have methods for serialization
and constructing. This property enables the CCS channel system to send asynchronous
objects over network boundaries.

Transient objects are generated by static objects and propagated through the method
RaiseEvent(object).

cTransientObject class

Specific transient objects

cDataChange class

The cDataChange transient object is the most used object within CCS. A data change
object communicates state changes of variable values.

cAlarm class

The cAlarm object communicates alarms evolving in arbitrary static objects of CCS ser-
vices.

cInfo class

The cInfo class communicates informations over the channel system.

cJobSpec class

A cJobSpec object specifies the description of a set of variable values.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -75-

cJobEntry class

A cJobEntry object communicates a set of variable values.

Error Handling with cError class

The error handling within the Shacira framework is based on objects of type cError.
Concentrating on one object type simplifies the management of language independ-
ent error messages.

Objects of type cError cross process- and even network boundaries when thrown as
C++ exception.

cError exceptions are handled by the controlling thread. If the thread is a non visual
thread cError exceptions are logged into the shacira error log file.

If the thread is the GUI thread cError exceptions are shown through an application
specific message handler. cError informations can be localized in this situation.

14.2System Programmer View

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -76-

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -77-

15Code Organisation

15.1Development

The Shacira development root directory points to the directory where the development
framework is installed. This directory is communicated through the environment vari-
able SHACIRADIR.

Example:

SHACIRADIR=e:\usr\prj\Shacira

Beneath the Shacira development framework the free orb OmniORB must be installed
(actually version 3.04 is used). The installation directory of OmniORB is referred to as
<ORBDIR> within the subsequent text. The ORB specific development directories must
be directly integrated into Microsoft Visual C++ using menu Tools->Options Tab dir-
ectories.

Include files:

<ORBDIR>/include

<ORBDIR>/include/OmniORB3 (in case of omniORB-3-versions)

<ORBDIR>/include/OmniORB4 (in case of omniORB-4-versions)

<ORBDIR>/include/COS

Library files:

<ORBDIR>/lib/ x86_win32

Executable files:

<ORBDIR>/bin/ x86_win32

Binaries that are needed from the OmniORB package are:

• omniidl
The CORBA-IDL-compiler of OmniORB

Shacira binary files are copied to the directory <SHACIRADIR>/bin/win32. The path
variable of the system should contain this directory.

For comfortable debugging two entries must be added to the path environment vari-
able under windows:

1. The shacira binary path <SHACIRADIR>\bin\win32

2. The custom specific binary path that must contain all CCS-Extension dlls. In
general <CUSTOMPROJDIR>\bin\win32

In the same way the path list for executable files must be extended with the Shacira bin
path <SHACIRADIR>/bin/win32 in VCPP-Options.

Binaries that are needed from the OmniORB package are:

• styx.exe
A parser generator needed to generate interpretation code for the languages
SLang and EM63.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -78-

• ctoh.exe
A tool to generate C-Headers from generated C-Files of styx.

• pp.exe
A precompiler to translate widget descriptions with custom specific properties
into C++-header files (needs ppQt.pre for the translation process).

• mdlc.exe
The Shacira data model compiler for translation of Shacira data models.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -79-

15.2Runtime

A runtime system consists of the following parts:

Program Directory

The program directory contains the binary files of the CCS application

• Executable files (*.exe under Windows)

• Shared library objects (*.dll under Windows)

Model Directory

Default <Program Directory>/model

The model directory contains the following files:

• Data models (*.mdl)

• Additional function declarations for GUI programs (*.dec)

• Symbol files

• SCPL program files (*.pgm)

Configuration Directory

Default <Program Directory>/cfg

The Configuration directory contains the following files:

• CCS configuration schema (Shacira.def)

• Application specific configuration extensions (application.def)

• CCS configuration files (*.cfg)

• Client configuration files (*.cfg)

Log Directory

Default <Program Directory>/Log

The Log directory contains the following files:

• Log files (*.log)

Data Directory

Default <Program Directory>/Data

The Data directory contains the following files:

• Data files to hold persistent data of an application (*.dat)

Internal Directory

Default <Program Directory>/Internal

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -80-

The Internal Directory is for application specific use. Every Shacira application should
use the internal directory to organize application specific data.

15.3Binary Files of a CCS-Application

All binary files of a CCS-Application are located in the <program directory>. Locating
binary files in one of the system directories under Windows is neither necessary nor re-
commended.

Standalone CCS Service Process

The program ccs.exe is a console based program that hosts CCS services. Graphical
user interfaces can be separated to access data and events of the hosted CCS services.

Graphical User Interfaces

The graphical user interfaces are in general (but this is no requirement) realized as
programs with the name app.exe. Graphical user interfaces may host CCS services.
On the other hand a GUI can act as standalone process everywhere in the network.

Version: 1.5 19.Jan. 07

User Documentation: Shacira Page -81-

16Glossary
SHACIRA

Scalable High performant data Acquisition and Control InfRAstructure is a C++
based development framework for applications in the manufacturing area.

CCS

Core Control Services is a service interface and implementation that acts as base ser-
vice for acquisition, control and manipulation of plant floor data.

CCS service

A CCS service is a process that hosts CCS service implementations.

CWidgets

Qt based GUI controls that easily can be integrated with CCS services.

SLANG

Shacira Language this is the language to describe application specific data models.

SCPL

Shacira Control Programming Language is a subset of SLANG to describe procedural
extensions in a CCS service.

Version: 1.5 19.Jan. 07

	1Overview
	2User Functions
	2.1Function classes
	Model function classes
	GUI function classes

	2.2Function References

	3CCS Service
	3.1Basic CCS Communication Principles
	Synchronous Communication
	Async chronous Communication
	Event Channels

	3.2CCS Logistic Infrastructure
	3.3CCS Software Layers
	3.4CCS Database
	3.5Device abstraction
	3.6Programs (tasks)
	3.7Persistence
	3.8Storage
	3.9Data Modelling in SLANG
	Semantic description
	Database Definition (DatabaseDef)
	Function Declaration (FuncDecl)
	Function Reference (FuncRef)
	Variable Definition (VarDef)
	Variable related properties
	Description (description=”description”)
	Text (text=”text”)
	Dim1 (dim1text=”text”)
	
Dim2 (dim2text=”text”)
Dim3 (dim3text=”text”)
Dim4 (dim4text=”text”)
	VarType (vartype={act,set,volatile})
	PersistenceType (persistence={ram,bbram,file})
	RefreshType (refresh=<milliseconds>)
	RefreshType (refresh=event <event type>)
	
RefreshType (refresh=event <refresh code>)
	File (file=Identifier)
	FilterFunc (filter=<FuncRef>
	MinSpec (minimum=<Agument>
	MaxSpec (maximum=<Agument>

	3.10Variable mapping to a device
	Scalar address based mapping (map buf-spec type address:bitpos)
	Scalar name based mapping (map buf-spec type name)
	Structured address based mapping (map buf-spec type {address:bitpos,…})
	Structured name based mapping (map buf-spec type {name,…})
	Buffer specifier
	Mapped data type
	Conversion function (“conversion” “=” FuncRef)
	Extensions for address based mapping
	Auto Address Increment

	3.11Extending a CCS Service
	Functions that extend a CCS service
	Filter functions (class filter)
	Conversion functions (class conversion)
	Limit functions (class limit)
	Unit functions (class unit)
	Access functions (class unit)
	Using application specific programs tot extend CCS service functionality

	3.12Databases Contexts and Variables
	3.13Variables

	4How to Implement Application Specific Devices
	4.1Role of buf_spec, var_name and address arguments
	4.2Bit Operators
	4.3Device caching

	5How to Implement Model functions
	5.1Automatic arguments of model functions

	6How to Implement Application Specific Programs
	7Variable References
	7.1Unlimited Variable References
	7.2Variable references as notification end points

	8Qt GUI Framework
	8.1Information flow in a Shacira application
	8.2Software architecture of the GUI Framework integration
	8.3User interface structure
	8.4General CWidget functionality
	8.5CWidget Data Input functionality
	8.6General CWidget properties
	Dark (blanking) functionality
	Event receiver
	Framework specific signal slot mechanism
	Widget Access Properties
	Variable References

	8.7Input Widgets
	8.8Application Frame CAppFrame
	virtual methods of an application frame object
	Global functions to bootstrap the user interface
	CAppFrame methods
	Page Stack methods
	Language switching related methods
	Printing related methods
	Dialog and wizard related methods
	User management methods
	Help related methods

	8.9CWidget types
	Container widgets
	CFrame
	CGroupBox
	CbuttonGroup
	Button widgets
	CtoolButton
	CPushlButton
	Data input widgets
	CStateButton
	CReqValue
	CIndReqValue
	CRadioButton
	CCheckBox
	CComboBox
	Display widgets
	CFixText
	CActValue
	CGraphic
	CProcGraphic
	CListView
	CVideo
	CAlarmWidget
	CTable

	8.10Organization of custom specific GUI code
	Common-Directory <customdir>/Common (<commondir>)
	Custom-Base <customdir>/CustomBase

	9How to Implement GUI functions
	9.1Functions that extend the GUI
	Dark functions
	Plausibility functions
	User functions
	Button functions

	10How to Implement Application Specific Widgets
	11System Startup Procedure
	11.1Client Startup
	11.2Server Startup
	Initialisation steps of the CCS service
	Initialisation steps of the GUI

	12Tools
	12.1Developer Tools
	Data-Model-Compiler mdlc

	12.2Runtime Tools
	System Console
	Info Console
	Channel Manager

	13Configuration
	Configuration objects of a CCS service
	Configuration object
	Process object
	Cell object
	Context object
	Device object
	Program object
	Serial Channel object
	Connection object
	Channel object

	14Shacira API
	14.1Application Programmer View
	cResources class
	cContext class
	cVarRef class
	cVariable class
	cUnitDef class
	Static objects
	Transient objects
	cTransientObject class
	Specific transient objects
	cDataChange class
	cAlarm class
	cInfo class
	cJobSpec class
	cJobEntry class
	Error Handling with cError class

	14.2System Programmer View

	15Code Organisation
	15.1Development
	15.2Runtime
	Program Directory
	Model Directory
	Configuration Directory
	Log Directory
	Data Directory
	Internal Directory

	15.3Binary Files of a CCS-Application
	Standalone CCS Service Process
	Graphical User Interfaces

	16Glossary

